If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+15y=162
We move all terms to the left:
2y^2+15y-(162)=0
a = 2; b = 15; c = -162;
Δ = b2-4ac
Δ = 152-4·2·(-162)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-39}{2*2}=\frac{-54}{4} =-13+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+39}{2*2}=\frac{24}{4} =6 $
| -1/2(2n-4)=-10 | | -5m=10-3m | | 71=x−7(x+1) | | .30*x=400 | | x+(.08295x)=39892.29 | | 3x+28=5x+52=2x-10 | | 9m5=27m3 | | -10x+4-2x+10=14 | | 4.2x=25.2 | | 2x+28+90=180 | | -4x/5=3/5 | | -14.36=1+v/6 | | 2x-25=90 | | 2x-10=2(x-10) | | -69+12x=2x+155 | | 73=8y-7 | | 3/5x-5=49 | | 9x+210=340 | | 5/2x+4=7/3x | | 5f=-17 | | X+(.0825*x)=95 | | 5.2=-5x+17.7 | | 5.2=-5x+17.2 | | 4(y-2)+3=-5+4y | | 5x–12=3x+4 | | 5^(2x-1)=12^(x) | | x(x+5)=30/5 | | 3^3x3^2=0 | | 03x^2-6=0 | | 5+2x=2x+6 | | 3x+5=-5+3x | | 5(x-2)=10+5x |